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Abstract. Proofs are given that the symmetry transformations preserving the radial form of
the SOq (N) Schr̈odinger equation lead to matching conditions which are essentially the same as
the classical ones. Power-law potentials are treated as illustrative examples. In particular, the
N1-dimensionalq-deformed Coulomb system is converted into aq-deformed harmonic oscillator
acting again inN2 = 2(N1 − 1) space dimensions. We also found thatq-deformed 1/N energy
formulae are covariant under such transformations to first 1/N -order.

1. Introduction

The derivation of one-dimensionalq-deformed Schr̈odinger equations has received much
interest during the last few years [1–5]. One can proceed by replacing, somewhat tentatively,
the usual derivative with theq-difference derivative found long ago by Jackson [6]. The
same applies, for example, to the phase-space realization of theq-deformed algebra of
oscillators [7]. Therefore, we are faced withq-analysis andq-difference equations. The
deformation parameter is denoted byq, so that the usual description is reproduced asq → 1.
A further important step has been the synthesis between quantum groups described byR-
matrices [8] and the covariant differential calculus [9, 10], such as has been performed on
the non-commutative quantum Euclidean spaceRNq [10, 11]. For this purpose, the quantum
group of linear matrices GLq(N) serves as an illustrative example. The quantum group of
rotations SOq(N) has also been treated in a similar manner [12–14]. These developments
led to the derivation of the SOq(N)-counterpart of theN -dimensional radial Schrödinger
equation, as shown by (2.33) in [15].

Under such circumstances we have to define the equivalent radial Jackson derivative as
[16]

∂(r)q r
n = µ

q + 1
[[n]] qr

n−1 (1)

whereµ = 1 + q2−N . Accordingly

∂(r)q f (r) = µ

q + 1

f (qr)− f (r)

r(q − 1)
(2)

wheref (r) is an arbitrary analytic function. The rescaled radial differential operator can
also be introduced via dq/dqr = ((q + 1)/µ)∂(r)q . This timeq > 0, whereas the quantum
number reads

[[n]] q ≡ q
n−1

2 [n]√q = qn − 1

q − 1
. (3)

0305-4470/96/081795+07$19.50c© 1996 IOP Publishing Ltd 1795



1796 E Papp

The SOq(N)-counterpart of theN -dimensional radial Schrödinger equation is then given by(
−q2`+N−1∂(r)

2

q − µ

q + 1
[[2`+N − 1]]q

1

r
∂(r)q + V (r)

)
ψ(r) = Eqψ(r). (4)

Other inter-related radial equations exhibiting non-trivialq-deformations of the centrifugal
barrier have also been written down [16]. Relatedly, theq-parameter has a well
defined theoretical meaning as it characterizes, in conjunction with theR-matrix, the non-
commutative attributes of the underlying quantum Euclidean space. The radial coordinate
of this space and the classical quantum number of the angular momentum are denoted byr

and`, respectively. Theq-deformed energy isEq andψ(r) represents theq-wavefunction.
Units for whichh̄ = 2m = 1 are used.

Now we have to recall that form-preserving canonical transformations of the usual radial
Schr̈odinger equation inN space dimensions have been discussed earlier [17–19]. On
the other hand,q-canonical transformations in one space dimension have been discussed
recently, with a main emphasis on the rather special one-dimensional oscillator–Coulomb
duality [20]. Motivated by these issues, we would like to address the question of whether
q-deformed form-preserving canonical transformations can also be performed for the radial
SOq(N) equation presented above. We shall then see that this is indeed the case, thereby
succeeding in generalizing earlier results towards the presentq-deformed description.

2. The q-conversion technique

Putting for example,r = r2, let us introduce a new radial coordinate as

r1 = r1(r2) = rα2 (5)

where α is a power exponent which remains to be established later. We shall assume
that r1 and r2 correspond to non-commutative Euclidean spaces havingN1 andN2 space
dimensions, respectively. The quantum numbers of the angular momentum are`1 and
`2, whereas the corresponding deformation parameters areq1 and q2 = q. Then theq-
wavefunctionψ1(r1) yields a transformedq-wavefunction as follows:

ψ2(r2) = ψ1(r1(r2)) (6)

so that

ψ2(q2r2) = ψ1(r1(q2r2)) = ψ1(q1r1). (7)

This shows that

q1 = qα2 = qα (8)

which will be used in the following. We have to recognize that equations (6) and (7) are
able to proceed up to a constant factor, but here we shall identify this factor with unity.
Under such circumstances, the radial derivative∂(r2)q2

becomes subject to the transformation

∂(r2)q2
ψ2(r2) = ∂(r2)q2

ψ1(r1) (9)

so that

∂(r1)q1
= µ1

q1 + 1

q2 + 1

µ2

[[
1

α

]]
q1

r1−α
2 ∂(r2)q2

(10)

whereµj = 1 + q
2−Nj
j (j = 1, 2). In addition,q-deformed momentum operators can be

defined as

pj = −i∂
(rj )
qj . (11)



Theq-deformation of symmetry transformations 1797

Then theq-deformed commutation relations read

pjrj − qj rjpj = −i
µj

qj + 1
(12)

as it can be easily verified by direct computation. It is understood that the above momentum
operators are non-Hermitian, but a subsequent symmetrization can be readily carried out
[21].

Next, let us make the rather special choiceN1 = N2 = 1. Then (10) becomes

∂(r1)q1
= 1

q + 1
r−1

2 ∂(r2)q (13)

if α = 2, whereq2 = q, q1 = q2 and r1 = r2
2. One realizes immediately that (13),

as it stands, reproduces (29) in [20]. Moreover, (22) and (23) in [20] are reproduced by
(12) under the same conditions. Thus our formulae (10) and (12) accomplish a non-trivial
generalization of one-dimensional results which have been presented before.

3. The derivation of q-deformed Schr̈odinger equations

Now, let us combine (10) with the inputq-deformed Schr̈odinger equation:(
−q2`1+N1−1

1 ∂(r1)
2

q1
− µ1

q1 + 1
[[2`1 +N1 − 1]]q1

1

r1
∂(r1)q1

+ V1(r1)

)
ψ1(r1) = E (1)q1

ψ1(r1). (14)

Keeping in mind thatq2 = q, one would then obtain(
−q2`2+N2−1∂(r2)

2

q − µ2

q + 1
[[2`2 +N2 − 1]]q

1

r2
∂(r2)q +�r2α−2

2 (V1(r
α
2 )− E (1)q1

)

)
ψ2(r2) = 0

(15)

provided that

`2 +N2 − 2

`1 +N1 − 2
= α. (16)

One has

� = [[α]] 2
q

(
µ2(q1 + 1)

µ1(q + 1)

)2

(17)

for which theq-identity[[
1

α

]]−1

q1

= [[α]] q (18)

has been used. Furthermore, starting with`1 = 0 nothing prevents us from assuming
reasonably that̀2 = 0, in which case (16) exhibits the simplified form

N2 − 2

N1 − 2
= α. (19)

This means that the appropriate solution to (16) is given by

N2 − 2

N1 − 2
= `2

`1
= α (20)

which reproduces identically the classical matching condition (see (15) and/or (18) in [19]).
It should be noted that in the classical case the matching condition (20) also characterizes,
from the very beginning, the reduced radial equations, i.e. the ones from which the first
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radial derivative has been removed. Equation (20) should be viewed as a conversion rule
which is reminiscent of the same underlying dynamical symmetry (see also [22]), even if
the one-to-one correspondence between the states is not preserved. Such a correspondence
could be achieved under suitable modifications [23], but here we find it suitable to proceed
further without introducing additional parameters. In other words, we found that under
the nonlinear coordinate transformation (5), the number of space dimensions, as well as
the quantum number of the angular momentum, become subject to the same inter-related
transformations as in the classical case. In general, the classical SO(N) description is
meaningful in so far asNj > 2, but one has the possibility of approachingNj = 2 from
the right. Extrapolations such asN1 = 1 and/orN2 = 1 are special cases which should be
handled with care. It is also understood that the radial quantum numbernr = 0, 1, 2, . . .
is not affected by such transformations. Applying (20) then givesµ1 = µ2 = µ, which
represents a sensible simplification. Accordingly,� becomes

� = �0(α) = [[α]] 2
q

(
qα + 1

q + 1

)2

(21)

so that�0 → α2 asq → 1.

4. Concrete examples

Let us consider the input power-law potential

V1(r1) = C(1)n1

r
n1
1

. (22)

Then (15) yields aq-deformed radial Schrödinger equation reproducing the form of (4) as
soon as

α = α0 = 2

2 − n1
(23)

which expresses theα-fixing anticipated above. We then find that (15) and (23) imply a
duality transformation in which couplings get converted into energies andvice versa. This
conversion is characterized by the mutual relationships

E (2)q2
(n2) = −�0(α0)C

(1)
n1

(24)

and

�0(α0)E (1)q1
(n1) = −C(2)n2

(25)

where

n2 = 2n1

n1 − 2
(26)

and where

V2(r2) = C(2)n2

r
n2
2

(27)

stands for the output potential. Theq-deformed energies of the input and output systems
have been denoted byE (1)q1

(n1) andE (2)q2
(n2), respectively.

In particular,α0 = 2 if n1 = 1, so that the input Coulomb system (V1(r1) = −Z/r1) in
N1 space dimensions is converted into an harmonic oscillator working in

N2 = 2(N1 − 1) (28)
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space dimensions. CorrespondinglyV2(r2) = ω2r2
2, such that

E (2)q (−2) = Z�0(2) (29)

and

ω2 = −�0(2)E (1)q2 (1) (30)

where�0(2) = (1 + q2)2. On the other hand, the actualq-deformed energies of the
Coulomb- and harmonic-oscillator systems are given by [14, 16]

E (1)
q2 (1) = − (1 + q2)2

µ2

Z2q4d1

[[2d1]] 2
q2

(31)

and [13, 15]

E (2)q (−2) = µω

q + 1

[[2d2]] q
qd2

(32)

respectively, where

d1 = `1 + nr + N1 − 1

2
(33)

and

d2 = `2 + 2nr + N2

2
= 2d1. (34)

It is obvious that (29) is fulfilled precisely via (30)–(32), which illustrates in more detail
the conversion referred to previously.

Now, generalizations to arbitrary attractiven < 2 potentials are in order. For this
purpose we shall resort to the SOq(N) motivated deformation of 1/N energy formulae
proposed recently [16]. Using (29)–(31) in [16], one finds that theq-deformed energy of
(22) is given by

E (1)q1
(n1) = n1 − 2

n1

(
−n1

2
C(1)n1

) 2
2−n1

d(1)q1
(n1)

2n1
n1−2 (35)

whereq1 = qα0 and (see also [24])

d(1)q1
(n1) = µ

2q1

[
`1 + N1 − 2

2
+

(
nr + 1

2

) √
2 − n1

]
q1

(36)

to first 1/N -order. The potential (27) can be treated in a similar manner, which results in
the q-deformed energyE (2)q (n2). Invoking (23) again, it is an easy matter to verify that
(24) and (25) are fulfilled, this time to the first 1/N -order mentioned above. This is a
non-trivial finding which sheds a new light on the interplay betweenq-deformations and
the quantum-mechanical 1/N description.

It should also be mentioned that theq-wavefunctions characterizing the inter-related
radial equations (35) and (36) in [16] are

81(r1) = r
`1
1 ψ1(r1) = 82(r2) = r

`2
2 ψ2(r2) (37)

and

8̃1(r1) = r−a
1 ψ1(r1) = 8̃2(r2) = r

−α0a
2 ψ2(r2) (38)

respectively, where

a = 1

α0 ln q
ln

1 + q−2`2−N2+2

1 + qα0
. (39)
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In addition, the matching condition (20) is preserved. It is obvious that (37) and (38) reflect
the conversion ofq-Laguerre-functions intoq-Hermite ones andvice versa. Moreover, (20)
remains invariant under the modified SOq(N) equations presented previously (see (16) and
(24) in [16]).

5. Conclusions

Proofs have been given that the symmetry transformations preserving the radial form of the
SOq(N) Schr̈odinger equation (4) proceed in close agreement with the classical description.
Considering power-law potentials, we have then found the matching condition (20), which
reproduces precisely the classical result. The mutual conversion of couplings into energies
is expressed by (24) and (25). These equations can be gathered together as

E (2)q (n2)

C
(1)
n1

= C(2)n2

E (1)q1 (n1)
= −�0(α0) (40)

which makes clear the symmetry attributes of the present form-preserving transformations.
It has also been found thatq-deformed 1/N energy formulae fulfil (40) to first 1/N -order.
This agreement supports in turn the reliability of such 1/N formulae. Other input potentials
can be treated in a similar manner, provided that one succeeds in separating a constant term
standing for−E (2)q /�0(α) from theα-dependent product

P(α, r2) = r2α−2
2 V1(r

α
2 ). (41)

This leads to a corresponding generalization of (23).
Concerning the mutual relationships discussed above, we have to say that a non-

trivial q-deformed energy for the Coulomb system can also be established specifically
in terms of a more general deformation of the harmonic oscillator [25]. Moreover, an
alternativeq-deformation of the energy of the three-dimensional Coulomb system has been
obtained from the SUq(2)-deformation of a four-dimensional oscillator [26], by invoking
the Kustaanheimo–Stiefel transformation [27]. It is also well known that the radialN -
dimensional Schr̈odinger equation exhibits the SO(2,1)-symmetry [28–30]. This indicates
that further progress can be done by applying the quantum group SOq(2, 1). Previous results
concerning SUq(1, 1) [7, 31] can then be used by virtue of the SUq(1, 1) ∼ SOq(2, 1)-
isomorphism. Proceeding in this wayq-deformed ladder and shift operators have been
established for the radial-Coulomb, radial-harmonic-oscillator and one-dimensional Morse-
oscillator potentials [32]. Moreover, the SOq(2, 1)-deformation of the Morse-oscillator has
already been carried out [33]. In this context theq-deformation of the mapping of the radial
Coulomb system into the one-dimensional Morse-oscillator deserves further attention. It is
then clear that other developments should also concern the SOq(2, 1)-deformation of the
radial Schr̈odinger equation.

Strictly speaking, the one-dimensionalq-canonical transformations discussed previously
[20] are not oscillator–Coulomb duality transformations, in the sense that the oscillator
potential is mapped into a Coulomb potential acting on the positive half-axis, which is
supplemented by an attractive inverse square potential. Such inverse square potentials arise
typically when one keeps invariant the number of space dimensions [34, 35]. In addition,
the one-dimensional limit of the Coulomb potential is−Z/|x|, wherex ∈ (−∞,+∞) [36].
Accordingly, one dimensional studies are quite desirable. Indeed, the one-dimensional limit
of the Coulomb energy is not obtainable automatically from theN -dimensional result by
just puttingN = 1 so that a special treatment is in order. Note, however, that (38) in [20]
is misleading, which means that related refinements are in order.
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